Regulation of Macrophage Polarization by RON Receptor Tyrosine Kinase Signaling
نویسنده
چکیده
The M1 and M2 states of macrophage polarization are the two extremes of a physiologic/phenotypic continuum that is dynamically influenced by environmental signals. The M1/M2 paradigm is an excellent framework to understand and appreciate some of the diverse functions that macrophages perform. Molecular analysis of mouse and human macrophages indicated that they gain M1 and M2-related functions after encountering specific ligands in the tissue environment. In this perspective, I discuss the function of recepteur d'origine nantais (RON) receptor tyrosine kinase in regulating the M2-like state of macrophage activation Besides decreasing pro-inflammatory cytokine production in response to toll-like receptor-4 activation, macrophage-stimulating protein strongly suppresses nitric oxide synthase and at the same time upregulates arginase, which is the rate limiting enzyme in the ornithine biosynthesis pathway. Interestingly, RON signaling preserved some of the characteristics of the M1 state, while still promoting the hallmarks of M2 polarization. Therefore, therapeutic modulation of RON activity can shift the activation state of macrophages between acute and chronic inflammatory states.
منابع مشابه
Role of macrophage-stimulating protein and its receptor, RON tyrosine kinase, in ciliary motility.
Macrophage-stimulating protein (MSP) is an 80-kD serum protein with homology to hepatocyte growth factor (HGF). Its receptor, RON tyrosine kinase, is a new member of the HGF receptor family. The MSP-RON signaling pathway has been implicated in the functional regulation of mononuclear phagocytes. However, the function of this pathway in other types of cells has not been elucidated. Here we show ...
متن کاملInhibition of TLR4-induced IκB kinase activity by the RON receptor tyrosine kinase and its ligand, macrophage-stimulating protein.
The RON receptor tyrosine kinase regulates the balance between classical (M1) and alternative (M2) macrophage activation. In primary macrophages, the ligand for Ron, macrophage-stimulating protein (MSP), inhibits the expression of inducible NO synthase, a marker of classically activated macrophages, whereas promoting the expression of arginase I, a marker of alternative activation. Ron(-/-) mic...
متن کاملActivation of CR3-mediated phagocytosis by MSP requires the RON receptor, tyrosine kinase activity, phosphatidylinositol 3-kinase, and protein kinase C zeta.
Macrophage-stimulating protein (MSP) promotes the phagocytosis of C3bi-coated erythrocytes by resident peritoneal macrophages, although the mechanism by which this occurs is largely unknown. We show that MSP-induced complement-mediated phagocytosis requires the RON receptor tyrosine kinase and the alphaMbeta2 integrin, as evidenced by the inability of RON-/- and alphaM-/- peritoneal macrophages...
متن کاملActivation of the RON receptor tyrosine kinase protects murine macrophages from apoptotic death induced by bacterial lipopolysaccharide.
RON is a receptor tyrosine kinase activated by macrophage-stimulating protein. We demonstrate here that RON activation inhibits LPS-induced apoptosis of mouse peritoneal macrophages and Raw264.7 cells expressing RON or a constitutively active RON mutant. The antiapoptotic effect of RON was accompanied with the inhibition of LPS-induced production of nitric oxide (NO), a molecule responsible for...
متن کاملActivation of the stem cell-derived tyrosine kinase/RON receptor tyrosine kinase by macrophage-stimulating protein results in the induction of arginase activity in murine peritoneal macrophages.
Regulation of macrophage activities in response to inflammatory stimuli must be finely tuned to promote an effective immune response while, at the same time, preventing damage to the host. Our lab and others have previously shown that macrophage-stimulating protein (MSP), through activation of its receptor RON, negatively regulates NO production in response to IFN-gamma and LPS by inhibiting th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014